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Abstract
Monitoring traps are important components of integrated pest management applied against

important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Wide-

mann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in bil-

lions of euros worldwide. Pests can be controlled with ground pesticide sprays, the

efficiency of which depends on knowing the time, location and extent of infestations as early

as possible. Trap inspection is currently carried out manually, using the McPhail trap, and

the mass spraying is decided based on a decision protocol. We introduce the term ‘insect

biometrics’ in the context of entomology as a measure of a characteristic of the insect (in our

case, the spectrum of its wingbeat) that allows us to identify its species and make devices to

help face old enemies with modern means. We modify a McPhail type trap into becoming

electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding

the entrance of the trap. The beating wings of insects flying in the trap intercept the light and

the light fluctuation is turned to a recording. Custom-made electronics are developed that

are placed as an external add-on kit, without altering the internal space of the trap. Counts

from the trap are transmitted using a mobile communication network. This trap introduces a

new automated remote-monitoring method different to audio and vision-based systems. We

evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap

in insectary cages. Our experiments assess the potential of delivering reliable data that can

be used to initialize reliably the spraying process at large scales but to also monitor the

impact of the spraying process as it eliminates the time-lag between acquiring and deliver-

ing insect counts to a central agency.

Introduction
A number of major pests of commercial olives and fruits worldwide are monitored by McPhail
type traps as thoroughly described in [1]. Here, we report on the development of an automated
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McPhail trap which identifies and counts targeted insects and transmits this information to a
central monitoring agency via a wireless communication network. The pest of interest in this
study is the olive fruit fly, Bactrocera oleae. However, our methods can be used for other insects
that are typically monitored with McPhail type traps [2]. Female olive fruit flies lay eggs
beneath the fruit surface. These eggs hatch and larvae feed inside the fruit. This causes drop of
the fruit or degradation of the quality and value of oil due to increased acidity [2–3]. If left
untreated, it is held responsible for losses of 80% of oil value and up to 100% of table cultivars
[2–4] and economic damage of approximately $800 million per year [2, 3–7].

For insect species that are of large economic importance such as B. oleae, there is a monitor-
ing protocol to be followed on when to initiate a spraying procedure based on insect sampling
using traps. The success of the control treatments against B.oleae is based on the correct timing;
too early will be ineffective due to contact of small proportion of pest population with the
insecticide and too late will risk, high pest population levels with inevitably significant qualita-
tive and quantitative losses. For countries, where production of olive oil is a countable percent-
age of their total income (Greece, Turkey, Spain, Italy, Portugal, Algeria, and Morocco),
monitoring and control is handled by the state while agricultural unions and large orchard
owners can take further actions. The monitoring protocol is currently based on the standard
McPhail trap. Standard McPhail is made of glass, is heavy, fragile and, very expensive com-
pared to plastic ones. They are currently used, mainly because we have accumulated experience
of their use over decades. At that time, plastic was not a widespread choice if even existed.
Entomologists have been observing the olive orchards for many years using standard McPhail
traps. Repeated field observations have resulted into a correlation rule between the optimal
time to begin control (mainly spraying with chemical insecticide) and the numbers of captured
insect individuals in the McPhail trap. According to 94631/15.4.2002 guideline by the Greek
Ministry of Agriculture this rule states that, the first spraying should be initiated when: a) 5–20
B. oleae are found per trap for 5 days period, 1 trap per 1000 trees, b) the female to male ratio
should be larger or equal to 1:1, c) the percentage of the fertile females is at least 5%, d) the
average fruit weight> 0,20 gr and the core of the fruit starts lignification (the core of coagula-
tion initiation coincides with start creating amino acids in olives), e) favorable weather condi-
tions exist for the growth and development of the insect (temperature 20–35°C and high
humidity).

The so called ‘decision protocol’ is used as a rule of thumb. In practice, reports from moni-
toring traps are not accepted blindly but serve as supportive evidence. Certified state entomolo-
gists adapt the rule to the particularities of different geographical parts of the country and
integrate diverge sources of information before granting permission for large-scale spraying.
Reports coming out of manual monitoring of traps are accepted with a varying degree of trust.
The main difficulty of this procedure is that a large number of glass McPhail traps must be stra-
tegically placed on olive orchards, sometimes on distant and remote locations and numerous
people should place, maintain and inspect the traps on a 5-day basis from the end of spring till
the end of fall. The pest-managers must discern B. oleae in the mass of collected maze of dead
insects and even extract and deliver the pest to authorities for verification as regards the Greek
case. This procedure is complicated, it involves a large number of people that are not always
qualified to carry the task but, most importantly, can be easily bypassed by practitioners.
Therefore, large economic loss is often reported because of the pest and this is usually attrib-
uted by expert entomologists not to the inefficiency of the monitoring protocol but to its
opportunistic application that often leads to an ‘educated guess’ of when and where to start the
spraying procedure. The electronic McPhail trap does not revisit other aspects of the protocol
but only replaces two stages of it with automated procedures:
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A. The classification of the insects is done automatically, as they fly into the trap, the
moment they enter, and collective results are transmitted to the central monitoring agency
on a scheduled basis without human intervention.

B. Our modified traps are equipped with a Geographical Positioning System (GPS) receiver.
Geographical coordinates are transmitted in addition to insect count data. Therefore, one
can be sure that the insects counted come from the right place and not from an inappropri-
ate but easier to reach location (e.g. on the roadside) as often in practice. Along with the
coordinates, mean values from recordings of temperature and humidity sensors are
transmitted in order to be correlated and be used as supportive evidence to assist decision
making. Temperature and humidity are registered and transmitted as well, as these environ-
mental parameters are closely correlated to insects’ life cycle and reproduction patterns [2].

All processing is performed locally on the trap, while the results are transmitted via a text
message, aiming to keep power consumption and operational costs to a minimum. The delivery
of data can be remotely set on per event, daily or weekly basis and only the power consumption
can set the limit. Therefore the present trap has the potential to monitor the spatial distribution
and dynamics of pest populations in real-time.

The reported literature on electronic insect traps that employ optical sensors is sparse [8–
10]. In [8], the authors presented a stand-alone device that would count and transmit counts of
the oriental fruit fly, Bactrocera dorsalis, from the field. This system, however, used the basic
functionality of on-off, i.e., counting photo-interruptions due to the passages of insects. It did
not involve spectral analysis of recordings and therefore could not discern insect species, an
idea introduced by Moore et al. [9]. In [10], a short report has been presented on an instrument
that could identify moths in flight but this has not the form or the functionality of a monitoring
trap. The first actual prototype trap that integrated all these components and was functional
was presented in [11]. This paper is a thoroughly revised work of this idea returning distinct
improvements in the following:

a. The trap is modified to account for the fact that, a number of B.oleae adults do not fly into
the trap, but will rather enter walking and therefore can bypass the sensor.

b. Improved custom-made electronics are developed that are placed on the exterior of the trap
as a slim add-on kit and therefore do not alter the internal space of the trap.

c. We carry out detailed controlled experiments with several flying insects including B. oleae.

Materials and Methods
In order to produce a usable platform, it is important to balance between the competing needs
of accuracy and other priorities such as the cost, real-time performance and power sufficiency.
Moreover, considering the platform’s long-term exposure to real-field conditions, the elec-
tronic equipment should be simple and robust. Sensor’s efficiency is also of grave importance,
but this should be achieved with low-power consumption and using a low-price sensor. Algo-
rithmic accuracy is highly ranked, but it should be achieved with low-complexity algorithms
that will allow real time performance and low power consumption. Construction cost is of
importance as well, but this work focuses on monitoring (that requires 1 trap per 1000 trees ~
10 ha) and not on mass-trapping. The electronic trap, cannot penetrate the routine of agricul-
tural work if it does not fulfill a real need that justifies its added cost, i.e. the reliable timing of
the spraying process at large scales and an estimation of where and how dense the problem is
prior to and after the treatment. The cost in crop loss due to an erroneous estimate of the
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initiation of the spraying process is very large compared to the cost of the electronic traps. Con-
sidering that the number of electronic traps to be deployed for monitoring is small, the addi-
tional cost of the trap is justified compared to the possible damage.

Provided that a sufficient number of traps is deployed, the monitoring agency can track the
status of infestation from day to day for large cultivated areas, spreading up to country level,
and assess the impact of the spraying in a timely manner, as there is zero time-lag between the
time insects are captured and the time data are reported. This lack of delay between the reality
of the infestation and the delivery of the assessment report allows one to efficiently design poli-
cies and actions. A time-lag in data reports would mean that people could be reflecting on a sit-
uation that may as well have evolved to another unknown state by the time they decide on an
action plan. This level of service could only in theory be achieved by manual means, as it would
require an amount of funds that would practically be difficult to secure. The device (see Fig 1)
presented in this work carries out the following tasks:

a. It attracts insects, either with food-baits or pheromones, as classical McPhail type traps do.

b. As they fly in the trap, an opto-electronic sensor composed of an array of photoreceptors
that acts as a receiver and an array of infrared LEDs on the opposite side of the circular
entrance guard the entrance by forming a light gate.

c. As the insect flies in, its wings interrupt the flow of infrared light from emitter to receiver.
The signal of the wingbeat received is of very high signal to noise ratio (SNR) and resolves
the fundamental frequency of the wingbeat as well as several harmonics up to 2 kHz.

d. The analog signal of the wingbeat recording received from the opto-electronic sensors is
directed to a microprocessor embedded in the trap that analyses the frequency content (i.e.
the spectrum) of the acquired recording. The aim is to extract the fundamental frequency
and the way the energy is distributed on the harmonics of the recording. We show that this
information, extracted from typical 30–500 ms duration flights of B. oleae is enough to
reveal species identity of the entering insect. Identity is attributed by calculating a distance
metric from the spectrum of the unknown incoming recording to the spectrum of pre-
stored prototype spectra of the pest.

e. The insects are counted one at a time while alive and upon their entrance to the trap, and,
therefore one avoids to confront the maze of insects that, due to piling and disintegration
are difficult to be reliably recognized and counted visually.

f. The electronic circuit stores insect counts and target counts internally and transmit counts
according to a preset timetable using the Global System for Mobile Communications (GSM)
network. The detection results of all entering insects are accumulated on per-day basis and a
Short Message Service (SMS) message, with the results is emitted from the field straight to
base. The SIM card and the GSM antenna are embedded in the microprocessor’s hardware.
The time-schedule of data delivery can be reset remotely by the user, by sending a typical
short message (SMS) to the trap.

Signal Processing of Optoacoustic Recordings
It takes a flying B. oleae 30–50 ms to cross the beam in a direct quick flight but can reach to 300
ms in slower types of flying patterns and even more in rare cases. The light fluctuation is
recorded by the sensor as it crosses the light path from emitter to receiver and subsequently
analyzed (see Fig 2 for a typical case of an in-flight recording). Fourier transform can reveal
how the energy of the recorded signal is distributed on its constituent frequencies. The basic
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idea can be grasped in Fig 3, exploiting an analogy to the way in which the human ears and
brain discriminate among musical instruments [12]. This figure shows two different real
recordings of musical instruments playing the same note (A4). Though they sound alike, the
human ear can easily discern from which instrument they originate. They sound alike because
they play the same note and share the common fundamental frequency of 440 Hz (correspond-
ing to A4). The sound of the instrument is not a pure sine and therefore, does not only demon-
strate a single frequency at 440 Hz but also possesses harmonics (frequencies at integer
multiples of the fundamental). The identity of the instrument is captured in the relative distri-
bution of energy on the harmonics. Note in Fig 3- (right) how the flute and the violin share the
same fundamental but the distribution of energy on the harmonics is quite different. If the flute
and violin in Fig 3 where the sounds made from insects’ wingbeat, they would correspond to

Fig 1. A sketch diagram summarizing the concept of the electronic McPhail trap. The insect flying in
occludes with its flapping wings the path of light from emitter to receiver. The electronics of the trap analyze
the light fluctuation of the receiver. Light intensity fluctuations constitute a ‘biometric signature’ directly related
to insect’s wingbeat frequency, size and shape of its wings. The signature is compared to pre-embedded
patterns from the target pest. Finally, counts of the target pest, temperature, humidity and GPS coordinates
are transmitted through the mobile GSM network from the field to the monitoring agency.

doi:10.1371/journal.pone.0140474.g001
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Fig 2. (top) A typical 200 msB.oleae. wingbeat event recorded as the insect crossed the optical sensor (18°C). (bottom) Magnitude spectral
density. The fundamental frequency of B. oleae typically drifts between 170 and 210 Hz.

doi:10.1371/journal.pone.0140474.g002

Fig 3. Top: Flute playing Note A4 at 440 Hz. Middle: Violin playing the same note. Bottom:Wingbeat of the insectMusca domestica. The time
domain plots show 30 ms of data. The spectrum is derived from approximately 2.5 s from the same signals. Note how the flute and violin time-domain plots
have the same period but different shapes leading to a different weighting on the importance of the harmonics.

doi:10.1371/journal.pone.0140474.g003

Insect Biometrics

PLOS ONE | DOI:10.1371/journal.pone.0140474 November 6, 2015 6 / 33



the -not uncommon- case where two insects beat their wings with exactly the same frequency.
Insect species can still be recognized due to the differences on the relative energy levels of the
wingbeat harmonics. Even the slightest morphological differences (i.e. size, shape, and mass of
the wings) as well as stiffness and kinetic properties of the muscle system controlling flight will
be reflected on the wingbeat spectrum.

Therefore, during classification we will not only take into account the fundamental fre-
quency, that is the frequency that the insect beats its wings, but also the harmonics produced
by the movement of the wings. The harmonics produced are related to the size and shape of
the wings. The slightest difference leaves an acoustic imprint. Insects of the same species (e.g.
B. oleae) will have differences in the spectrum of their in-flight wingbeat, as they are unrepeat-
able biological organisms. These differences have an imprint on the fundamental frequency
which is characteristic for each species and drifts slightly around a central value but also on the
distribution of harmonics. The spectrum of individuals of the same species do not have the
almost absolute repetitiveness of a note of a musical instrument. However, their spectrum fol-
lows a consistent, recognizable pattern and the differences in the spectrum of the same species
(inter- species spectral variability) are expected to be smaller compared to other insects of dif-
ferent species whose wings have different shape, size and wingbeat frequency (intra- species
spectral variability). As reported in [13] for the case of bumblebees, B. oleae is also expected to
hold a rather constant wingbeat frequency, in a given temperature, regardless of the speed and
flight pattern they hold.

The ‘Candlestick’ Sensors
The electronic McPhail trap, while operating in the field, compares the recording of the flying
in insect with pre-stored recording of the pest that act as prototype patterns. Based on this
comparison, it decides on the identity of the incoming unknown insect according to a distance
measure. These prototype patterns are recorded in the laboratory, by placing sensors (see S1–
S5 Figs) that sense the wingbeat of flying insects inside spacy insectary cages (see Fig 4 and S6–
S19 Figs). We need to record insects demonstrating flight habits and behavioral modes close to
the ones encountered in nature. We hereinafter describe how to record these prototypes, by
starting from where and how to produce a large number of insect specimens: The female B.
oleae egg-lays inside ripening fruit of olive trees in the field, by making a puncture with the ovi-
positor into the skin of the olive fruit. This act releases a tiny amount of oil out of the fruit and
the trained human eye can see from distance that the olive tree is greasy. We collect greasy
olive fruits that are visually confirmed to carry an oviposition puncture, from trees and place
them on a sieve.

The larvae inside the olive fruit are in various instars and they feed upon the pulp until they
exit, usually as third instar larvae which pass through the sieve to pupate. Then they are col-
lected and grown in an insectary cage. As larvae turn into adult insects, we supply them with
yeast hydrolysate-sugar diet and water to sustain them to life. We keep only first generation
insects, as breeding generations of insects in captivity results into degeneration that might
affect the flying mechanism. Denoting as day 0 the time we collect olives from trees, then at
day 0–12 the 3d instar larvae come out and, from day 8–20 they turn into adults. The same day
(few hours later), they can fly. Adult insects are free to fly without induced stress inside the
cage and while they fly they pass incidentally through the ‘candlestick-like’ sensors placed
inside the cage (see Fig 5). We place a large number of B. oleae only in cages and the recording
of their wingbeat occurs the moment they pass through the rectangle of the sensors on a ran-
dom basis. The size and shape of the sensor is designed is a way that is possible to pass it
through the entrance of a normal insectary cage. This innovative setting allows us to take
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effortless recordings of a large number of flight cases in a practical way, as insects are generally
difficult to manipulate. The sensors can record unattended for a number of days, or indefinitely
by connecting the kit containing the battery to a charger. In Fig 5, the insectary cage contains
about 500 adults of B. oleae. Depending on the insect density of the cage, one can have an order
of hundreds to thousands wingbeat recordings in just few hours.

Comparing Photodiode and Phototransistor Arrays
We have fabricated two versions of the optoelectronic device; the receiver is either an array of
photodiodes or phototransistors (see S20 Fig), while the emitter is always an infrared light
source. Experimentation with a laser as a light source has been reported in [14]. The laser
source consumes more power that the infrared light and produces comparable results to the
infrared light source. Since power sufficiency is crucial for a device working in the field, we
choose the infrared light source as an emitter. Both optical sensors are embedded in the same
cage thus recording the same insects at 20°C, 60% humidity. We observe that photodiodes can
track better the harmonics of the flying insects compared to phototransistors. Phototransistors
have a slower rise and fall time, at around 16 μSeconds while the photodiodes around 80 nSe-
conds. Moreover, the reception area of photodiodes is slightly larger than phototransistors,
allowing for longer recordings, as the insect spends slightly more time in the field of view. The
same figure demonstrates that the insects indeed hold a relatively constant wingbeat regardless
of the flight pattern and angle of pass through the detector. Since the power spectral density is
derived by hundreds of free-flying insects performing thousands of passes, large variations in
the frequency of the wingbeat would appear as flat areas in the spectrum which is not the case
here as can be verified in Figs 6 and 7.

Comparing Optical Sensors to Microphone Transducers
The waveforms generated by the flight sounds of B. oleae, were also recorded by a low noise,
small aperture gun microphone (MiniDSP, UMIK-1 omni-directional measurement

Fig 4. (top) A diagram of the candlestick optoelectronic sensor in mm, (bottom) the optical sensor in
its final standing inside the insectary cage. As insects fly freely in the cage, some of them randomly pass
through the square thus interrupting the light path from emitter to receiver.

doi:10.1371/journal.pone.0140474.g004

Fig 5. The optical sensors in their final setup, inside insectary cages with B.oleae. Each time an insect incidentally flies through the rectangle, a
recording of a wing flap is acquired.

doi:10.1371/journal.pone.0140474.g005
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microphone) inserted in the cage containing the same insects from which the optical record-
ings were taken. We recorded 24 hours of insect activity. In Fig 7 we compare the power spec-
tral density of the microphone recordings to the spectrum of the photodiodes sensor
recordings. The optical sensor follows closely the microphone for the first 4–5 harmonics. The
microphone can resolve higher harmonics as well. The recording took place at the same envi-
ronmental conditions as the experiments with the optical sensors.

One should not rush to see a benefit of the microphone to this task compared to the optical
device:

The optical sensor records an event only for the time that the light from emitter to receiver
is interrupted and therefore the wingbeat events are ad-hoc shorter in time than events
recorded by a gun microphone in a small cage containing a large number of insects of the same
species. Special measures have been taken in order to make possible a microphone recording in
the lab and these measures cannot be applied when operating in the unconstrained field: The
cage was placed in a quiet chamber in the laboratory providing low-noise conditions to study
insect sounds. In normal operational conditions, the microphone would pick up sound from
all directions, as the field is exposed to relative high noise levels (due to wind, cicadas, birds
and machinery), thus making unpractical to be used for the task at hand.

We observed closely the behavioral mode of B.oleae by inspecting visually the entrance of
insects to the sensors in Fig 5 and by tagging the corresponding waveforms. We group the
behavioral mode in two large sub-groups:

Fig 6. Normalized Power Spectral Density ofB. oleaewingflap asmeasured by a photodiodes array
vs a phototransistors array. Both sensors resolve the fundamental frequency of the wingbeat around 180
Hz. The diodes resolve better the harmonics at multiples of ~180 Hz.

doi:10.1371/journal.pone.0140474.g006
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a. Direct, fast crossing of the sensor either by moving upwards or diving in at an almost
straight path. It takes the insect 30–50 ms to cross the field of view of the sensor. In Fig 8 we
present a dozen of different events of this behavioral mode and their associated frequency
analysis.

b. Slower flying movements like if the insect is strolling. The movement may involve coordi-
nated turns and hovering. This mode of flight can take roughly 50–300 ms to cross the
receiver but depending on the angle of the entrance can reach even more.

Sensor Electronics
The electronics can pick up interference from electric lamps and must, therefore, be operated
only in daylight or DC-powered light in the laboratory. They also operate in total darkness. It
is possible to use electronic configurations that are immune to interferences but this increases
the cost of the sensors and we need to keep the cost down in order to be acceptable by the end-
users. More sophisticated electronics that send 60 kHz pulses instead of continuous light to the
flapping wings of the insect that modulates the amplitude of the high frequency carrier, clean
the low frequencies from interferences and demodulate back the wingbeat at acoustical fre-
quencies are immune to low frequency interference variations caused by AC powered electric
light [14] (see S1 Video). Another way to deal with interferences is to pick them up and sub-
tract them as suggested in [15]. The latter solution has the drawback of needing calibration. As
interference from electric light is not expected when the trap will be operational in olive

Fig 7. An optical sensor and a microphone transducer embedded in the same cage holdingB. oleae
insects. PSD of photodiodes array vs microphone transducer. Both sensors resolve the fundamental
frequency of the wingbeat and have good accordance until the 5th harmonic. In this particular controlled
setup, the microphone can resolve higher harmonics as well.

doi:10.1371/journal.pone.0140474.g007
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orchards, this available technology is not employed in this trap, so that we keep the cost down
(see Appendix for a cost analysis).

Light for the sensor was produced by 4 infrared LEDs, operating at 940nm, connected in
row (see S12 Fig). The multiple LEDs solution was chosen for two reasons: a) to ensure uni-
form light distribution across the entrance of the trap, b) to reduce power consumption. If one
employs a single LED one must increase the distance between emitter-receptor to cover the
whole entrance. This in turn leads to an increase of the current that needs to be supplied (a sin-
gle LED needs around 26mA). The use of 4 LEDs reduces this distance from emitter to receiver,
allowing a current of 2,7mA to be used, which in turn requires roughly 1/10 of the power of a
single LED.

Wingbeats are low in energy level. Despite this low power level the electronics provide
recordings with very high SNR (see S2 Video). The recordings of Fig 2 and Fig 8 have not been
post-processed with noise enhancement algorithms and one can note that, in the absence of an
event, noise is of very low amplitude. The high-pass filter embedded in the circuit cuts the very
low frequencies that are due to the main-body movements of the insect. In the Supportive
Information section we include detailed schematic diagrams of main-board electronics in S21–
S29 Figs.

Fig 8. PSD of photodiodes array resolving the spectrum of two typical flying patterns: straight, short-time passes (left) and slower maneuvering
passes of insects (right).

doi:10.1371/journal.pone.0140474.g008
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Embedded Software
The embedded platform runs a constantly-looping program (see Fig 9) which processes data
captured by the sensors. The board can be programmed in C/C++ using any Atmel AVR com-
patible programming environment, including the Arduino IDE if ease of use is a prime goal.
The line-level output from the optoelectronic sensor is routed through a series of operational
amplifiers in order to ensure the signal’s amplitude is adequate. The signal is then processed by
the Analog-to-Digital (A/D) converter of the embedded platform, capturing 512 samples
coded with 10-bit resolution, at 4 kHz sampling rate, with the resulting data being stored in a
circular buffer. The signal’s root-means-square (RMS) value is calculated and, if it exceeds a
pre-defined threshold, we call that an event has occurred, i.e. an insect has crossed the sensor’s
beam. This increases the counter of recorded events by one and triggers the second stage of
processing of the captured data. In more detail, a (Hamming) window function is applied on
the data and then a Fast Fourier Transform (FFT) is used to get the frequency domain repre-
sentation of the signal. The magnitude values of the FFT are then normalized in order to
account for possible gain differences, using the following function that was found to work bet-
ter that normalizing with the max value [16–17]:

si=

ffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

s2i

s
; i ¼ 1; ::; 512: ð1Þ

Once the data is normalized according to (1), it is compared to the reference spectra stored
in microcontroller’s EEPROM. In its current iteration, six reference recordings is the maxi-
mum that the microcontroller’s EEPROM size of 4 kB allows, but this can trivially be expanded
in future versions of the hardware platform.

Based on the comparison of the captured signal’s spectrum to the stored references, and
depending on if it matches the pre-defined similarity criteria, the investigated event can be clas-
sified as a match or not. In the former case, the counter of target species matches is increased
by one and auxiliary data is collected by the system’s sensors (namely temperature, humidity
and GPS coordinates). The resulting dataset transmitted via SMS to one or more recipients.

The Assembled Electronic McPhail Trap
The trap carries a photodiodes array sensor identical to the one used to record the reference
patterns in the laboratory (as depicted in Fig 5). The identicalness of the sensors is essential in
order to ensure that the sensors will not induce mismatch between wingbeats recorded in the
lab (see Fig 10) that serve as prototypes and recordings of the unknown, entering insect. The
emitters are placed in a dark plastic thin container in order to be held aligned opposite to the
receivers. The same type of containers provide shade to the optical receivers. Environmental
light and reflections must be attenuated as much as possible allowing mostly emitters’ light to
reach the receptors. It is important to avoid physical light coming from outside the trap to act
as an emitter as then insects inside the trap may modulate physical light and give false mea-
surements. The electronics are placed as an independent add-on, attached to the plastic top of
the trap, so that we effect minimal disturbance of the internal space of the trap (see Fig 11,
S30–S35 Figs and S3 Video). It is our effort that the insects sense a typical McPhail type trap, as
the literature has tested extensively insects’ response to it. There is an intentional gap between
the border of the inner entrance of the inverted funnel and the support of the sensors (see Fig
12). Video recordings of traps in the field as well in the laboratory have shown that B. oleae
enters the trap either by flying or by landing on the outside of the trap and walks up through
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Fig 9. Flow chart of processing stages. Processing is continued to the next stage only in case of a positive
event otherwise transmission stage rests in sleep mode

doi:10.1371/journal.pone.0140474.g009
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the outer entrance of the inverted funnel to the inner entrance following the chemical signals
emerging from the entrance. Then, in the vast majority of cases, walks along the circle on the
thin, uncomfortable border of the entrance and it typically flies from the internal border to the
top following the higher concentration of the evaporated bait gathered in the top part of the
trap. The gap is necessary, and in-fact, an efficient and cost effective solution that ensures that
the insect will not have an available path to by-pass the sensors by walking. The sensor is able
to detect and record an insect as long as it flies (see S1 Multimedia for optoacoustic recordings
of several flying insects and S4 Video).

Uploading the detection results using GPRS
We have experimented with the applicability of GPRS that is available on the communication
chip embedded in the trap and connects the trap to the Internet. It can be used to transmit
results as SMS messages, including counts of detected insects and associated metadata (i.e. bat-
tery status, GPS coordinates, temperature and humidity) to a web interface. In line with the
goal of producing an accessible and cost-effective solution, it was important to implement this
web/backend functionality without resorting to any costly and/or hard to setup and operate
software platforms. To this end, we exploited the dweet.io platform (https://dweet.io/), a free
web service that facilitates simple posting of data online from various internet-enabled devices.
To post the data online, each trap uses GPRS communication (HTTP in specific) to access a
specific URL, formatted in a way that passes the associated parameters to the dweet.io servers.

As we want to aggregate and visualize this data, we need to extract it from servers and for-
ward it to another platform. For this purpose, we make use of another free service, namely

Fig 10. Spectra of 20 different cases ofB. oleae optoacoustic, in-flight recordings.

doi:10.1371/journal.pone.0140474.g010
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Fig 11. A detailed 3D CAD of the electronic McPhail trap. Dimensions are in mm.

doi:10.1371/journal.pone.0140474.g011

Fig 12. Different views of the prototype electronic trap.

doi:10.1371/journal.pone.0140474.g012
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Freeboard (https://freeboard.io), which allows the visualization of the transmitted information
in an intuitive, and easy-to-setup manner. We then, create our dashboards which may feature
various visualization options, such as counters, graphs, GIS maps and other user interface ele-
ments. Thus, we combine the two platforms to enable real-time monitoring of the status of our
deployed traps though a user-friendly online web interface, at no extra cost.

A simpler transmission method was also implemented, which involved having the platform
send a daily SMS message with target counts and total events to a predefined mobile phone
number. This way, the owner of the olive orchards being monitored can get updates, even
when no internet access is available and/or when one is not computer inclined and thus not
comfortable with using the web interface.

Although we plan to study the case that the traps form a wireless network that collects data
from each trap using hop communication and there is only one transmission from the gate to
the central station we did not choose this option in this work. The traps must be strategically
distributed to cover the whole area of interest and this may include distance of several kilome-
ters, hills and other obstacle that can prevent nodes to contact each other. Moreover, farmers
would rather avoid dealing with the complexity of technology and possible problems with
incompatibility of diverse technologies.

Results
The objective of the verification module is to examine if the generated optical fluctuations
modulated by the wingbeats of the incoming insect belong to B. oleae or not (a two class prob-
lem). Therefore, the analog recording of the optical sensor is forwarded to the microprocessor
placed on top of the trap where is subjected to Discrete Fourier Transform in order to get the
frequency signature of the incoming wave and subsequently compared to pre-embedded fre-
quency signatures of the target insect derived from free flights in the laboratory.

In Fig 10 we show an example of 20 distinct free-flight passes of B.oleae adults taken with
the candlestick sensors, to demonstrate the consistency of the frequency signature.

One can note by looking at Fig 10, but also from inspecting the spectrum of hundreds in-
flight cases that the spectrum provided by the optoacoustic sensors is invariant to the entrance
angle and behavioral mode of the flying insect. This is reflected on the fundamental frequency
as seen in Fig 10, that demonstrates only a small drift among individuals and this is a key find-
ing for the classification stage, as we need to classify the incoming insect and we have no con-
trol on its flying mode.

One can get a variety of features out of a recording but, as analyzed thoroughly in [16–18],
we believe that the unprocessed spectrum and possibly certain simple transformations of it
(e.g. frequency pooling through a filter-bank, logarithmic amplitude compression) are a better
choice than more sophisticated features coming from estimators (e.g. f0, harmonics, autore-
gressive features etc.) for this task. We therefore focus on the spectrum solely. Real-time verifi-
cation based on the embedded circuits (see Fig 12), has to choose a simple rule, in order to be
compatible with power and time constraints.

The derived spectrum of the incoming insect is compared against the spectrum of four pre-
embedded spectrum prototypes. These prototypes are derived by performing K-means cluster-
ing on a set of B. oleae spectra different from the verification set. The K-means algorithm is a
fast clustering algorithm [19] that, in our case, partitions all given spectra in groups, an repre-
sents each group with a mean spectral vector. This set is composed of 403 recordings taken
with ‘candlestick’ sensors as demonstrated in Figs 4–5 (see S2 Multimedia for the dataset). The
K-means algorithm returns the four most important cluster centers that correspond to differ-
ent spectrum types of B. oleae. Then, the absolute distance of each of the 403 cases from the 4
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prototypes is measured and the smallest distance is tracked. We calculate the distance of the
amplitude spectrum of each recording from each prototype by using the absolute norm and we
keep the minimum distance.

A threshold derived by the mean of the tracked distances and enlarged by 3 standard devia-
tions is kept as the expected maximum divergence of B. oleae from the prototypes. During
operation, if the spectrum of an incoming recording achieves a distance that is more that this
threshold, it is set to a non-target species. Therefore, we need to extract threshold and reference
spectra only from the target species that we definitely know, and we do not make assumptions
for the incoming insects that will be unknown to us and probably different form the ones
encountered in the validation set.

The data set of the target insect is composed of 230 recordings of B. oleae insects different
from the 403 cases of the validation set. The data set is a real matrix S having dimensions
NxM = 230x256, where N is the number of recordings,M the number of FFT coefficients, and
the labels are 230 ones (“1”) set for the target species. Manual inspection of several McPhail
traps in the field revealed, in addition to B. oleae, several kind of flies, butterflies, bees, wasps,
mosquitoes, C. capitata and even cicadas. We do not further analyze the ‘everything else’ case,
as we are interested only on verifying the existence of a single targeted pest and therefore we set
the label (“0”) for them. One should be aware that species recognition of multiple species is
possible and straightforward [17–18], extending the applicability of the electronic trap to vari-
ous other insects of economic importance (e.g. C. capitata, B. dorsalis and many others). In
order to quantify expected results we start a series of experiments with gradual increase of diffi-
culty involving insects depicted in Table 1. For these experiments we measure the precision,
recall and F1-score. Precision (P) is defined as the number of true positives (Tp) over the num-
ber of true positives plus the number of false positives (Fp).

P ¼ Tp
Tpþ Fp

Recall (R) is defined as the number of true positives (Tp) over the number of true positives
plus the number of false negatives (Fp).

R ¼ Tp
Tpþ Fn

These quantities are also related to the (F1) score, which is defined as the harmonic mean of
precision and recall.

F1 ¼ 2
P � R
P þ R

High precision relates to a low false positive rate, and high recall relates to a low false

Table 1. Automated verification of B. oleae. Various insect species tested against the target species.

Species No. of records

B. oleae 230

Anopheles gambiae & Culex pipiens molestus 80

Apis mellifera 205

Chironomidae family 37

Lonchaea aristella 492

doi:10.1371/journal.pone.0140474.t001
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negative rate. High scores for both show that the classifier is returning accurate results (high
precision), as well as returning a majority of all positive results (high recall) [19].

First, we verify the presence of B. oleae against two mosquito species Anopheles gambiae
and Culex pipiens molestus. The experimental results in Fig 13 and Table 2 show very good
capability of discerning B. oleae against these mosquito species. All recordings in the verifica-
tion experiments with the exception of bees are derived from insects either flying in or by walk-
ing until the internal border of the trap and then flying-in (see Fig 14). One should have in
mind that this was not a difficult scenario as the spectrum of a typical case of a B. oleae wing-
beat is lower in frequency content than the high pitched mosquitoes (see Fig 15).

The next experiment deals with a species that is closer to the frequencies of B. oleae, and this
is A.mellifera (the western honey bee). Bees produce low frequency wingbeats with a funda-
mental frequency around 140–150 Hz which is lower than the 190–210 Hz of B. oleae as seen
in Fig 16. Their harmonics, however, are partially overlapping. The capability of the system to
discern which is which is again very high as shown in Fig 17 and Table 3.

We then move to the Chironomidae family of non-biting midges. This family’s wingbeat
spectrum shares partial resemblance to B. oleae but with a very different distribution of power
in its higher harmonics (see Fig 18).

The capability of the system to discern among insects is again adequate as shown in Fig 19
and Table 4, although we see a drop in the classification accuracy as the different spectra con-
verge to common shapes.

Then we move to a difficult case: Lonchaea aristella (Diptera: Lonchaeidae) is a fly as B.
oleae with a wingbeat spectrum completely overlapping with B. oleae (see Fig 20).

In this case the decision rule to classify insects based on the absolute difference of the spectra
fails to discern the different species. This is due to the fact that the fundamental frequency, that
is almost the same in both species, dominates in the calculation of the distance measure. Thus,
we examine other ways of classifying the spectrum that do not rely on a single number. First,
we resort to off-line, model-based classification that bases the decision to more parameters
than a single threshold, and is able to capture variable interactions to a large depth. Off-line
pattern recognition may classify data using more computational demanding algorithms, in
order to set a rough limit of what can be achieved on the specific dataset, provided we had no
memory and power constraints. Since we have fixed our approach to rely exclusively on the
spectrum and its transformations, we employed well-established, state of the art, machine
learning techniques that are capable of dealing with high-dimensional datasets. Support Vector
Machines (SVM), Random Forests (RF), Randomized Trees Classifiers, as well as the Gradient
Boosting Classifier (GBC), are known to be able to handle efficiently high dimensional feature
sets [19]. We tried these classification techniques in the case of B. oleae against L. aristella to
see if model based techniques can squeeze out more information from this data. The dataset is
randomly shuffled prior to any classification. The verification scores are based on 10-fold
cross-validation and are reported in Table 5.

For each fold we retain 80% from the shuffled data and accuracy is measured on the unseen
20% of the data. Table 1 depicts the mean results over the random 10-folds. The results are
now more encouraging as depicted in Fig 21 and Table 6. For this difficult case we also tried
deriving 2 codebooks of 4 prototypes, one codebook for each species (see Fig 22 and Table 7).

As detailed in the Methods section, we developed a web backend to allow trap monitoring
in a user friendly and timely manner. A proof-of-concept of this can be seen in Fig 23, where
for each of the monitored traps we have introduced a set of freeboard.io panels presenting the
number of events, the number of matches, the environmental parameters (including a graph
showing the past values), a map with the trap’s exact location and, finally, the current battery
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status. The above are all updated in real-time, as soon as the data uploads new information to
dweet.io.

In the example of Fig 23, the 1st trap has recorded 23 events through its sensors, of which 3
were positively identified as B. oleae insects. Moreover, the environmental sensors have
recorded a temperature of 29°C and a humidity of 69%, the GPS sensor has also acquired the
exact location and the battery is at 81% of its full capacity. To upload the above data online, the
software embedded in the trap issued HTTP requests to the dweet.io servers, at predefined
intervals. The data were saved on the dweet.io servers, under the “entomatic_trap_1”, “entoma-
tic_trap_2” and “entomatic_trap_3” object names. The same data were consequently aggre-
gated and visualized in the freeboard.io panels created for this purpose.

Discussion
The results show that the current state of the verification module can deliver reliable counts of
insects, provided their spectra do not overlap significantly. One should note, that, in the

Fig 13. Confusion matrix of Verification results of B. oleae vsMosquitoes (A. gambiae andC. pipiens
molestus).

doi:10.1371/journal.pone.0140474.g013

Table 2. Accuracymeasures for classifying B.oleae against twomosquito species.

precision recall F1 score #recs

B.oleae 0.95 0.94 0.95 230

Mosquitoes 0.84 0.86 0.85 80

Avg/total 0.92 0.92 0.92 310

doi:10.1371/journal.pone.0140474.t002
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Fig 14. The electronic McPhail trap inside an insectary cage with B. oleae. To help interpret system operating characteristics, the analog output from the
sensor is recorded before it is sent to the microcontroller, and recordings are also made after the signals are processed by amplifier and filter circuits.

doi:10.1371/journal.pone.0140474.g014

Fig 15. Spectrum of wingbeat recording of insect flying in the trap. (Left) B.oleae, (right) A. gambiae.

doi:10.1371/journal.pone.0140474.g015
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aforementioned experimental results we have chosen a very simple rule based on the absolute
distance of spectra. The model-based classification experiments demonstrate that there is room
for significant improvement in the classification scores. We have scrutinized the analog

Fig 16. Spectrum of wingbeat recording of insect flying in the trap. (Left) B.oleae, (right) A.mellifera.

doi:10.1371/journal.pone.0140474.g016

Fig 17. Confusion matrix of Verification results of B. oleae vs A.mellifera.

doi:10.1371/journal.pone.0140474.g017
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recordings prior to entering the microprocessor and after being digitized by it and we see a pos-
itive perspective in the following directions: a) increasing the coding depth of the A/D con-
verter to 16 bits (currently restrained to 10 because of the processor used) as coding affects
recognition greatly, b) the buffer of monitored samples used to trigger an event is currently dis-
carded which reduces the available data from which the spectrum is derived. Since our data are
short-time, this, sometimes leads to very noisy recordings as parts of the events were discarded.
A number of misclassification was due to this fact and we will account for this loss of data in
future versions, c) studying 2D receptors (i.e. two layers of photoreceptors instead a single
array to allow for a longer time-span of flight (at least-double) that is expected to increase spec-
trum accuracy, d) transmit the recordings to a central agency instead of the decisions in text.
Since typical events last only 30–50 ms this means that 1 second can hold about 20–30 events
at 4 kHz sampling rate. The transmission using the General Packet Radio Services (GPRS)
functionality will allow the more accurate, off-line, model-based techniques to be applied on
the recordings while significantly reducing the cost of the trap. The latter choice is expected to
shift recognition results by a large margin.

Conclusions
The effort of this work was to make a functional, stand-alone, prototype electronic trap that
completes successfully all processing stages starting from attracting B.oleae, as all traps do,
measuring the wingbeat of the entering insect, extracting its spectrum, comparing it to pre-
embedded reference patterns in real-time and transmitting collective results via SMS.

Table 3. Accuracymeasures for classifyingB.oleae against A.mellifera.

precision recall F1 score #recs

B.oleae 0.95 0.94 0.95 230

A. mellifera 0.94 0.94 0.94 205

Avg/total 0.94 0.94 0.94 435

doi:10.1371/journal.pone.0140474.t003

Fig 18. Spectrum of wingbeat recording of insect flying in the trap. (Left) B.oleae, (right)member of theChironomidae family.

doi:10.1371/journal.pone.0140474.g018
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The electronic trap, at this stage, can adequately discern B. oleae and deliver reliable counts
against species that are very different in morphological terms, which, in-turn, is reflected on
their wingbeat spectrum. As we move to species that resemble B. oleae fly (e.g. other kinds of
flies:M. domestica, L. aristella, C. capitata) the recognition accuracy drops and we must resort
to more advanced classifiers as analyzed in the Verification experiments Section.

There are some issues that are not dealt in this work but will be in the near future:

a. Power sufficiency is something missing from the current analysis of the electronic trap. We
are working on low-power electronics, in order to make the trap power sufficient for months
and also reduce its actual cost (see Appendix).

b. A pending task is the experimentation with gender recognition. In the case of mosquitoes,
that are dimorphic, classifying sex from the wingbeat is a relatively easy task as females are
larger than males and this leaves a trace in the wingflap as demonstrated in [17]. For the
case of B. oleae we have not yet studied this, as it requires the manual separation of hun-
dreds of B. oleae adults in different cages for males and females.

Fig 19. Confusion matrix of Verification results of B. oleae vsChironomidae.

doi:10.1371/journal.pone.0140474.g019

Table 4. Accuracymeasures for classifying B.oleae against members of theChironomidae family.

precision recall F1 score #recs

B.oleae 0.90 0.94 0.92 230

Chironomidae 0.48 0.32 0.39 37

Avg/total 0.84 0.86 0.85 267

doi:10.1371/journal.pone.0140474.t004
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c. B. oleae is ectothermic and increases its wingbeat frequency along with the rise in tempera-
ture. The trap must operate in temperatures typically between 20–35°C. We experiment on
compensating the effect of varying temperatures by shifting the spectrum before comparing
it to embedded reference signals according to the measurements of the temperature sensor
embedded in the trap. We also experiment with embedding prototypes recorded at different
temperatures.

d. We are currently experimenting with the idea of wirelessly sending recordings of the pest to
be installed automatically in the trap and serve as prototypes i.e. take reference signals from
an internet host of insects’ wingbeats measured with optoacoustic systems and download
the prototypes remotely straight to the traps. This would augment the utility of the trap as it
would be able to change focus on different insects without human intervention.

e. The real field holds the truth regarding the functionality of the electronic traps and a
detailed open-field test is pending. However, in-lab analysis with almost real-field condi-
tions was the necessary step prior to the unconstrained field as it revealed possible problems
and permitted the fine-tuning of software and equipment.

We believe that biometrics can be applied in various ways on animals, including insects, in
order to realize what happens and where it happens and what is the density of the species

Fig 20. Spectrum of wingbeat recording of insect flying in the trap. (Left) B.oleae, (right) Lonchaea aristella (Diptera: Lonchaeidae).

doi:10.1371/journal.pone.0140474.g020

Table 5. Model-based techniques classifying B. oleae vs L. aristella. Average scores over 10-fold cross-
validation, 20% hold-out.

10-fold average

Support Vector Machines 0.738

Random Forests 0.736

Extra Trees 0.725

Gradient Boosting Classifier 0.736

doi:10.1371/journal.pone.0140474.t005
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counted, allowing the design of reliable policies based on the outcome of these measurements.
We suggest that electronic traps that record and analyze insects’ wingflap can open new ways
for several other applications such as smart beehives, devices that emit species labels and
counts to central agencies to feed with data infestation models updated real-time and make
predictions of future outbreaks (see e.g. https://www.kaggle.com/c/predict-west-nile-virus),
alert devices for dangerous species and countless others applications.

Appendix
We hereinafter include a cost analysis of the electronic trap.

Fig 21. Confusion matrix of verification results using a random forest classifier (B. oleae vs L.
aristella) accuracy measures.

doi:10.1371/journal.pone.0140474.g021

Table 6. Accuracymeasures for classifyingB.oleae against L. aristella.

precision recall F1 score #recs

B.oleae 0.74 0.74 0.74 43

L. aristella 0.78 0.78 0.78 49

Avg/total 0.76 0.76 0.76 92

doi:10.1371/journal.pone.0140474.t006

Insect Biometrics

PLOS ONE | DOI:10.1371/journal.pone.0140474 November 6, 2015 26 / 33

https://www.kaggle.com/c/predict-west-nile-virus


Cost-analysis
There is no reason nowadays to base monitoring of insects on expensive and fragile glass
McPhail traps as often reported in entomologically oriented research work. Even though there
is evidence that plastic McPhail type trap have similar performance in catching insects as the
original glass McPhail [20] one could even insist to the original design of the McPhail by print-
ing an indistinguishable plastic one using conveniently a 3-D printer.

Regarding the electronic version of the McPhail trap presented in the paper, we believe that
the quality and value of olive oil and the high-risk due to the pest B. oleae, can justify the added
costs of the electronic monitoring traps. The cost is of course, subject to change but in order to
help to the assessment of the cost/benefit tradeoff we have a detailed cost breakdown in
Table 8. It should be noted that the total cost is expected to drop if the prototype uses the

Fig 22. Confusion matrix of verification results using the absolute distance between spectra and a
codebook of 4 spectrum prototypes for each species B. oleae vs L. aristella.

doi:10.1371/journal.pone.0140474.g022

Table 7. Accuracymeasures for classifyingB.oleae against L. aristella using a codebook of 4 spec-
trum prototypes.

precision recall F1 score #recs

B.oleae 0.61 0.38 0.47 230

L. aristella 0.59 0.79 0.68 262

Avg/total 0.60 0.60 0.58 492

doi:10.1371/journal.pone.0140474.t007
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Fig 23. Detection counts received from the GPRSmodule. The figure shows the online web interface that presents detection results of trapped insects in
general and target species in particular, based on Freeboard.io and OpenStreetMap. (Figure is similar but not identical to the original image, due to copyright
restrictions, and is therefore for representative purposes only).

doi:10.1371/journal.pone.0140474.g023
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GPRS functionality instead of GPS and the microcontroller changes to one with lower power
consumption.

Supporting Information
S1 Fig. Candlestick sensor design.
(TIF)

S2 Fig. Candlestick sensor.
(TIF)

S3 Fig. Candlestick sensors (two photodiodes and two phototransistors arrays).
(TIF)

S4 Fig. Candlestick sensor in an insectary cage.
(TIF)

S5 Fig. Candlestick sensor in an insectary cage.
(TIF)

S6 Fig. Candlestick sensor in an insectary cage.
(TIF)

S7 Fig. Candlestick sensor in an insectary cage.
(TIF)

S8 Fig. Candlestick sensor in an insectary cage.
(TIF)

S9 Fig. Candlestick sensor in an insectary cage.
(TIF)

S10 Fig. Candlestick sensor in an insectary cage.
(TIF)

S11 Fig. Candlestick sensor in an insectary cage.
(TIF)

S12 Fig. Candlestick sensor in an insectary cage.
(TIF)

S13 Fig. Candlestick sensor in an insectary cage.
(TIF)

Table 8. Cost breakdown of the hardware of the electronic McPhail trap (date last viewed 30/6/2015).

Item Model Unit Price € Quantity

Emitter (infrared led) TCRT5000 0.45 4

Receiver (diodes) TEMD5080X01 0.68 10

Microcontroller ATMega2560 12.15 1

Temperature-humidity Si7021 4.03 1

GSM/GPS SIM908 15 1

Electronic Components Passive, RTC, EEPROM, PCB, Connectors 15 1

Plastics Plastic McPhail trap, add-on 5 1

Battery Lithium 6000mAh 19 1

Total 78.78

doi:10.1371/journal.pone.0140474.t008
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S14 Fig. Candlestick sensor in an insectary cage.
(TIF)

S15 Fig. Candlestick sensor in an insectary cage.
(TIF)

S16 Fig. Candlestick sensor in an insectary cage.
(TIF)

S17 Fig. Candlestick sensor in an insectary cage.
(TIF)

S18 Fig. Candlestick sensor in an insectary cage.
(TIF)

S19 Fig. Candlestick sensor in an insectary cage.
(TIF)

S20 Fig. Photodiodes and phototransistors arrays (receivers) followed by infrared led
arrays (emitters).
(TIF)

S21 Fig. Infra-red LED emitter circuit. Light is provided by 4 infrared LEDs (940nm) con-
nected in row, led by a 2.7 mA current.
(TIF)

S22 Fig. Photodiodes Array Receiver circuit. The receiver is a linear array of 10 photodiodes
connected in parallel. The received light is amplified by the IC1 and is driven to the band-pass
filter.
(TIF)

S23 Fig. Circuit of filters. The filtering process is carried out by the high-pass filter IC7 A, B &
C and the low-pass filter IC6 A, B & C. Subsequently, the signal is amplified by IC6D and
driven to the processor.
(TIF)

S24 Fig. Gain circuit. The signal coming out of the filters is amplified by the current circuit by
the factors 1, 10 and 100. The signals x1, x10 and x100 are driven to the 3 analog inputs of the
microcontroller.
(TIF)

S25 Fig. Power supply circuits. The power supply circuit has as input the Lithium battery 3.7
Vdc and supplies voltages 3.3 Vdc & 5 Vdc for the digital and analogue circuits.
(TIF)

S26 Fig. Communications circuits. The GSMmodule sends text data through GPRS. It also
embeds a GSM. When not in use MOSFET Q2 cuts its power supply so it does not consume
energy. It is controlled via the Microcontroller (ATMEGA2560).
(TIF)

S27 Fig. SD circuits. In the SD card the microcontroller stores the recordings (we store the
FFT but the actual recording of the ADC can be also stored) for further analysis. When not in
use MOSFET M7 cuts its power supply so it does not consume energy.
(TIF)
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S28 Fig. Processor circuit. Processor IC1, receives the analog signal from the inputs A0, A1
and A2 and selects the proper gain. IC1 is processing the resulting digital signal. It also controls
the GSMmodule, the humidity and temperature sensors.
(TIF)

S29 Fig. RF circuit.Wireless transmission of the recording of the optoelectronic sensor prior
to its entrance to the microcontroller.
(TIF)

S30 Fig. CAD design of trap.
(TIF)

S31 Fig. CAD design of trap.
(TIF)

S32 Fig. CAD design of trap.
(TIF)

S33 Fig. CAD design of trap.
(TIF)

S34 Fig. CAD design of trap.
(TIF)

S35 Fig. CAD design of trap.
(TIF)

S1 Multimedia. Wav recordings of several insects using optoacoustic sensors.
(ZIP)

S2 Multimedia. Spectrogram of flying insects’ wingbeat as stored in the SD of the electronic
McPhail trap and presented in the validation section of this study.
(ZIP)

S1 Video. Wingbeat of tetheredM. domestica. Sound is the sonification of the optoacoustic
sensor played through loudspeakers. Photodiodes array, Laser emitter as in [14].
(M4V)

S2 Video. Real-time spectrum analysis of tethered C. capitata wingbeat. Photodiodes array,
infrared emitter.
(WMV)

S3 Video. Animation of composing an automatic McPhail from its constituent parts.
(WMV)

S4 Video. The electronic McPhail in operational mode.
(M4V)
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